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Abstract: Dynamical systems atbe paradigm for the representation of complex systems. The fixed encoding in

a closed set of equations, however, contrasts with the openness of biogeochemical Bgsteneter
identification is a major problem in biogeochemical systems and calibration ofigtera converts models into
‘fitting machines’. Openness, self-modification, and historicity of biogeochégyiseems make non-trivial
predictions of future outcomes impossible. Notwithstanding, simulation models séms&@sents of synthesis
and have heuristic value to challenge existing data and theories. The modeling pselfeas & learning and
communication process, can be a mode of coping with different types of complexity.
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1. Introduction

System metaphors pervade ecology and the environmental sciences. System metapharaciegized by a set of
basic attributes,e. interacting parts, organization, collective behavior, and whole system functigRalign 1993).
Machine and circuit are concepts associated with system metaphors. The @ircejitof ecosystems accounts for
fluxes of matter and energy in arbitrarily defined ecosystems (devedogdryy Odum 1983). The machine metaphor
(Haken 1993) stands for the regular input-output behavior of determinate machines thatléallavork mechanisms.
Systems theory has transferred the system metaphor into a set of formal anccti@oe¢tiods. Although systems
theory originated in information theory and cybernetics, its formal approaches claimsahared interdisciplinary
validity (Lilienfeld 1978).

Environmental sciences regard their object of study as complex natural systéensnbdoncepts of complexity can
be distinguished, first, descriptive complexity, second, ontological complexity, thirg)ecotnon-linear) dynamical
systems, and fourth, an emerging ‘complexity paradigm’ replacing the clasgitifysim paradigm (Emmeche 1997).
The notion of ontological complexity is questioned by some researchers, which maintaimtplexiy has to be
conceived as a relation between representation and a represented system (Hanges 888). Complexity thus is a
function of the chosen description; systems that can not be described by a single theopfinediseiregarded as
complex (Kornwachs & Lucadou 1984). Accordingly, the number of different, non-equivalent dessrgita certain
system has been equated with the degree of complexity of the system (Casti 1986).

Dynamical systems have becothe formal paradigm in the ‘discovery of complexity’ across a range of disciplines:
Dynamical systems as universal paradigm propelled the diffusion of complexity coinciyet€mpirical sciences and
have become the leading paradigm for both conceptual and numerical models of complex phenarodimag. ik a
dynamical system is regarded as an adequate way of coping with the (descriptidexitpminatural systems,
allowing for better system understanding and the simulation and prediction of systemoBeGansequently, in the
environmental sciences ecosystems are treated, modeled and simulated yas/éfehelynamical systems (seq.
Bossel 1997, Richter 1994).

Models play an outstanding role in the study, management, and utilization of complex natenas.sy®dels can be
differentiated according to the degree of process description, which ranges frosoiradio empirical, functional
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approaches and to mechanistic (stochastic to deterministic) physically basesl (Bode& Rohdenburg 1987,
Hoosbeek & Bryant 1992). Accordingly, three types of models can be distinguished (Bossel 199 Bglavior-
descriptive model€.g.the growth-and-yield tables of forestry. These so-called empirical, functiodabradictive

black box models dominate ‘utilization technology’ in forestry, agriculture, and the eraragof water resources
(Hauhset al. 1998). Second, elementary-structure models that elucidate determined basic prozesse the

aggregate description, the parameters of these models lack empiricallyraie counterparts and have to be fitted.
The Lotka-\blterra equations are an example for this approach (Richter 1985). Thindnistc ‘real-structure’

models that make use of supposedly ‘real’ empirical parameters. Simulation mdtelgnvironmental sciences are
elementary- to real-structure models, depending on model puggseéearch models vs. management models; Huwe
& van der Ploeg 1992).

In this paper we focus on mechanistic dynamical models, which simulate biogeocleoteakes in ecosystems on a
variety of scales. The field of biogeochemical models encompasses models for ther zetthcycling of water and
elements, ecotoxicological models, and global change models.

Biogeochemical models as scientific products may be regarded from the peespéptiediction or the perspective of
understanding, following a debate on the aims of science (Toulmin 1981). As predictiveenssiLtirey are used to
simulate the behavior of complex systems and to compute scenarios of system behavioryindesxtarnal
conditions. Examples are the effect of different fertilizer regimes on nutoisses to the aquatic system, the behavior
of newly created pesticides or the effect of climate change on the tehezstian cycle. On a societal level, models
fulfil important roles as management models, as decision support models and iressknass studies on different
spatial and temporal scales. Dynamical simulation modeling was inspired by and in tishetbtire hope that the
environmental sciences would open a way towards environmental engineeriegy(Bedten 1994, and the title of the
conference proceedings edited by Dubois [1981]). The goal was to enable an ecosystemtemgar@pulate natural
systems according to societal aims.

In the following, the paradigm of dynamical systems will be characterized, wiibytar reference to the notions of
state and time. We will show how the dynamical system paradigm is adapted in thegnoaeledure prevailing in the
environmental sciences and we will cast a light on a number of problems arisinganitse @f the modeling
procedure. The paradigm of self-modifying systems is presented as an altem#étevessentialist dynamical system
paradigm. Making reference to the two opposing paradigms, fundamental limitattbesdyhamical systems approach
in the environmental sciences are discussed. Emphasis is on ‘noise’ and on the interngdprideariables, which

can not be accounted for in dynamical systems. In our opinion, dynamical models are not suiteuréalictien of

the future behavior of natural systems. While dynamical models (as products) maygiagsaheuristic tools, the
modeling process itself can be a way of coping with descriptive and communicative>igmple

2. The dynamical system as a paradigm

The increasing interest in middle-number systems along with the ‘discovery of giynplenathematics, physics and
the biological sciences (Hedrich 1994) has found its formal counterpart in the paradigmpdéx dynamical systems.
Originally a mathematical formalism, it has inspired research in theieatgiciences and has found widespread
adoption in ecology and the environmental sciences. "A dynamical system is one whaseastges with timet)'
(Arrowsmith & Place 1994, p. 1, first sentence). The generic system diagram for any@asitlynamical system is
shown in Fig. 1.
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Figure 1: Generic system diagram for a continuous dynamical system: The general fornstat¢he
equations describing the system is: fz/f(z, u,t) and v = g (z, ut); z is the state vector, u the vector of
environmental inputs, v the vector of system outdutse (external parameter) time, f the (vector) state
function and g the (vector) output function (adapted from Bossel 1997).

The notion of an abstract system state lies at the heart of dynamical systeatsstfhet state is the entirety of all
states of a system at a given time. The states of a system are representetiavy tagiables, which contain all the
information relevant to the present of a particular process. The possible statesysftem are delimited by an abstract
phase space, which has a fixed number of degrees of freedom. The degrees of freedanedteydbe state
variables of the system. The system state moves along trajectories in thepplcasénsan exo-perspective on the
dynamical system, the system collapses to a closed system (Kampis 1994): Thesgstsrhoundaries are defined
externally and analytically, closing the system towards its environment excelpe feedtor of environmental input
(external variables). The encoding in a dynamical system as a formal set shilevéfiist order system). This implies a
syntactic conception of information, as pragmatic information would not only change ehbugtatso the structure of
the system (Kornwachs & Lucadou 1984). Fitting into a concept of formal computation (as oppasgeidfrmal,
biological and physical concepts; Emmeche 1994), the system is regarded as a ppbsgasactic information,

which processes incoming signals according to fixed rules, excluding ‘noise’ from thmidghsystem.

The temporal dynamics of the systerm, the transition from state to state, comes about as the state variables are
updated by a transition function. The transition function is a causal-determinate fuactodeterminate system: If
the state of a dynamical system at a certain time is known, the state for any othiertppstan be computed.
Accordingly, the same transition function can be applied for every interval. It$ isffeversible as the effect of time
can always be ‘undone’ by the application of the time evolution function. In this exo-physical concept of
time-invariance (Kampis 1994), time is scalar, invariant, reversible and uthividreainderlying notion of time is
parameter time (Drieschner 1996), derived from absolute Newtonian time, which fallbttiag characteristics
(Mittelstaedt 1980, p. 15): Both its topological structure (temporal sequence) ardricsstnucture (parameter time)
are equal. Time has no relationship to objects external to it, while any processoréfiersame absolute, universal
time (external time).

At the outset of dynamical system building, the set for the encoding of the system is nbedwedterial object under
study is not the system, because every material object contains an unlimited numbebkfsvand, therefore, of
possible systems. The system is a list of variables (Ashby 1976, p. 40). The task of the mtmledayithe list of
variables until the system becomes determinate: a determinate machine sad@havior can be encompassed in a
list of variables that is logically and mathematically workable (Liliehfed78, p. 37). The basic question is which
variables are necessary in order to express a given domain of phenomena (Kampis 1992ay isltuedifaced with

a frame problem (Paton 1996k. the question how reading frames or frames of description should look like (Kampis
1992a).

Notwithstanding the frame problem, an essentialist notion underlies the dynantieal pgsadigm: It is assumed that
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the modeler can discern the essential properties of the represented systenrshoelelad to isolate "... the essential
(behaviorally relevant) system structuire, the identification of essential state variables, their feedbacks, andl critica
parameters" (Bossel 1992, p. 264). In this view, the dynamical system retains the eSdencepresented systeine.
that which remains the ‘nature’ of the system throughout its change from potemialittuality. Abstract state and
system structure stand for this essence.

3. Ecosystems as dynamical biogeochemical systems?

Ecosystems are constituted from two perspectives (O'&tedll. 1986, p. 8-13): First, there is the population-
community approach, which views ecosystems as networks of interacting populations amth ithe/kinvironment is
regarded as context. Secondly, there is the process-functional approach that focuses amdnanergy fluxes,
regarding ecosystems (and compartments) as bio-physico-chemical reaeterg.(she soil as a reactor" by Richter
1986). Here the function is considered more important than the biotic entities performirgdircuit and the machine
metaphor have been formalized to deal with the biogeochemical perspective on esystem

Biogeochemical models, the focus of this paper, deal with a range of spatiotemplesalAtone extreme, inputs and
outputs of total landscape units (catchments, watersheds) are measured and mottedesthat extreme, processes
such as decomposition or the nitrogen cycle are studied at the point scale. ModelsfiEdasystem management
and environmental risk assessment @egwith the dynamics of organic matter (Powlson 1996), the loss of (excess)
nutrients such as nitrogee.§.de Willigen 1991, de Willigen & Neetson 1985, Engel 1993, Frissel & van Veen 1981,
Grootet al. 1991, van Veen 1994) and phosphoraug.Casselet al. 1998), and with the dynamics of organic
contaminants such as pesticideg(Calvet 1995, Richtest al. 1996, Walker 1995) and other xenobiotics (Behrendt
1999).

Uncontrollable inputs
(external variables)

State variables

System —> and
system outpuis

System
parameters

Controllable
inputs

Figure 2: Characteristics of dynamical systems in the environmental sciences. Téma dgscribes the
transformation of inputs into outputs and system states under the influence of extenmgvdriaibles and
system parameters (adapted from Berg & Kuhimann 1993, pp. 4-5 and Gnauck 1995).

Mechanistic biogeochemical models are encoded as dynamical systems, which lapedénen iterative procedure
consisting of the following steps (adapted from Joergensen 1991 and 1995):

Definition of problem and bounding of the problem in time, space and subsystems
Development of model structure

Sensitivity analysis

Calibration

‘Validation’ (conceptual validity)

Application as scientific or predictive tool

Validation of prognoses (operational validation)

In the course of model structure development, a conceptual model and mathematicatiémsrafithe processes are
developed. For the representation of ecosystems as dynamical systems the problem adegsficationj.e. the
identification of state variables, system structure, and the characsevistice components, as well as the problem of
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parameter identification have to be addressed (Richter 1994). The system struutireownects the elements of the
system, is invariable (first-order system). The number of degrees of freeddmblesris given by the respective
system structure. System state and system output of these determinate §igténis (@ function of parameter time
and of the

e initial values of the variables;

e parameters of the system;

« boundary conditions,e. the external variables or driving factors;

« temporal transition function of the state variables as a function of parameteicuadaty conditions.
Characteristic limitations of this modeling procedure are investigated folitwing.

3.1 System structure and processes

Modelers face a basic problem. There are neither theories that allow the dcamsbhimodels from first principles nor
theories that relate observations across different scales (Ettah3996). Process descriptions that have been
obtained on different but mostly small scales in field and laboratory studies, becomentiué geparture for model
construction: From the variety of process descriptions, the modeler chooses thatrplecasses to represent a
determined domain of phenomena, without disposireypriori criteria of relevance na posterioricriteria to test the
selection. Thus, modelers tend to base their choice on what from their background of expegercienportant.e.

on prior experience and intuition (Hornung 1996), putting together what seems relevant toréisemaBly there is an
optimal level of model complexity (Wissel 1989, p.i3, a point where the degree of model complexity — measured
e.g.by the number of state variables — matches data resolution and quality, leading to kreowvtedge gain about
the modeled system (Joergensen 1992, p. 87). However, whether such a point exists indeed and lhewauisd in
practice is far from clear. In modeling practice the idea prevails that acuptortmore processes leads to more
realistic model structures and hence to more accurate models. Environmeniad systeegarded as complex, thus
"increased complexity in models is interpreted as evidence of closer approximagalityd (Oreskes, in press). The
tendency of putting together as many processes (with their respective parpasepessible has been termed ‘naive
modeling’ by Hauhgt al (1996). It entails the unrestricted increase of degrees of freedom and frequelsttp lea
non-identifiability of model parameters and overparameterization (see below).

3.2 Parameters

In ecology, parameters are coefficients regarded as constant for a gpecif)system (Joergensen 1991, p. 67),
although in principle no measurable aspect can be considered constant over the observddtaiteganaecosystems
(Hauhs 1992) due to manifold feedbacks. Although the application of parameters as cangtaadistic, the
dynamical system approach calls for determined parameter values. Many pasa®pésd upon internal and external
variables and are computed as parameter functions, considered constant for asgptsaificFor example, hydraulic
conductivity depends upon water content in a supposedly reproducible way.
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Figure 3: Breakthrough curve for a Deuterium tracer experiment, together with two diffeest fits to
parameterize a model on soil water movement. The model visualizes the soil@sa@mhtaining mobile
and immobile fractions of water; B is the ratio of water contents of the twamfraethd v convection
velocity. The two (!) degrees of freedom are already too much for a unique solution (ingen1%08).

Spatial structure is a focal issue in the environmental sciences (De Boer 19i82,98%, O'Neillet al. 1989, Risser &
Box 1987, Wiens 1989), as in ecosystems processes in a hierarchy of spatial scalesliatgirara highly
heterogeneous medium. The interaction of scale and structure is even more probibemdlie non-linearity of the
processes. Due to the spatial heterogeneity of ecosystems on all scalestapatiaé is unknowable at any scales of
real interest (Beven 1996). In terrestrial ecosystems, virtually all pagestiée the conductance parameters or
temperature are spatially distributed. Typical examples are hydraulic condestivitemperature. For modeling
purposes, a spatially distributed parameter function has to be computed, which is aniyadistrébuted continuos-
valued function. It is neither constrained by theeng (first principles) nor bya priori fixation and it is only loosely
restricted by measurement due to variability. The parameter function thus affeghalegrees of freedom to be fitted
to any data set, as demonstrated by Fig. 3. Fitted parameters may allow for adeqoéitietieprof data, though
saying little about the ‘correct’ value of the parameter and leaving the issueofepar identifiability open (Hornung
1996). Non-identifiability of parameters is a major shortcoming of environmental models

3.3 Variables and degrees of freedom

In a dynamical system, the variables are defined in advance, staking out the phase bpa®estafh. Ecosystems are
(stochastic) systems with an infinite number of variables and hence an infin@asibmal phase space (Lange 1998).
To represent a domain of phenomena, the ‘relevant’ variables have to be chosen for the dgystenicaHowever,
there are only subjective criteria of which set of variables is necessarl, setiis sufficient, and which parts of a set
are superfluous to represent a certain domain. Table 1 describes the differentroegteri pools and their
parameterization for a specific site used in three simulation models of nilggamics. The choice of number, size,
and kinetic coefficients of the organic pools is "obviously arbitrary” (Richter &BEID6).

3.4 Initialization

In the initialization step, initial values are attributed to the state vasiabline system, making the initial state of the
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system explicit. Due to ecosystem heterogeneity and measurement problems, theit@dtualue of a variable can
not be assessed. Thus initial values are approximated or chosen arbitrarily, atsaintirgsystem has a short memory
and is not sensitive to initial conditions.

Table 1: Characteristics of the different organic matter pools distinguished in threlation
models for agricultural nitrogen dynamics. Parameterization is for a spstafin Denmark
(adapted from \ereecken et al. 1991).

’Model ‘Pool ‘ CIN ratio ’ % of organic C ‘ Half life time
[SWATNIT | Litter | 8 ] 8-1 | 693d

] Manure | 10 ] #1 | e93d

| Humus \ 12 | 92-99 | 189y

DAISY Biomass Pool 1 | 6 | 028 | 693 d
] Biomass Pool2 | 10 | 004 | 495 d
] | Soil Organic Pool 1] T +-80 | 515y
| | Soil Organic Pool 2 | +#-20 | 10y

|AMINO Humus \ 16 | 992 | 50y

] Fraction 2 | 12 ] <05 | 77d

’ ‘ Fraction 3 ‘ 58 ’ <0.5 ‘ 3y

| Fraction 4 \ 76 | 05 \ 130 d

| Fraction 5 \ 76 | <05 | 37d

] Fraction 6 | 24 ] <05 | 65d

] Fraction 7 | 24 ] <05 | 590 d

3.5 Boundary conditions and external driving variables

Ecosystems are open systems that do not sustain a boundary of their own. Thus, ecosystembantitvas are
defined arbitrarilyj.e. any biotic-abiotic system of interaction can be envisaged as an ecosystem. The choice of
boundaries and boundary conditions determines external variables and internal systdesveligavever, in the
practice of field investigation, the precise location of even the analyticallyedelfioundaries is unknown and the
assessment of boundary conditions remains vague (Hoffmann 1997).

Ecosystem boundaries are usually chosen in such a way that physical éagtersather and climate, become

external variables of the system. The external driving variables are assumeddepgandent of the respective
ecosystemi,e. there is no feedback. They presumably propel the ecosystem which, encoded as a dynamical system
reacts to the external variables in a determinate way.

Future weather and climate conditions can not be kreopmori, therefore in practice, weather records from the past
are used to compute short-term behavior (Addiscott 1993). However, past weather regdrdsimapresentative of
the full range of natural driving forces (Konikow & Bredehoeft 1992). Particularly wheingiforces themselves are
subject to major changes..global climate change) the ‘information content’ of weather records is inedidat

3.6 Calibration

Calibration is the attempt to find the best accordance between computed and obsergdhgatariation of some
selected parameters (Joergensen 1992, p. 68). However, due to the non-identifiability efgrarana to
overparameterization, calibration is a ‘fitting exercise’. Therefors ahiopen question whether it assures predictive
capacity and whether it contributes to understanding (see below).
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4. Selforganization and self-modifying systems

Dynamical systems theory has inspired the paradigmatic shift from externakatigm to self-organization in the
empirical sciences (Kratky & Wallner 1990). In ecology and ecosystem theory, thegpacddielf-organization is
gaining influenced.g.Kauffman 1993, Miiller 1997). Self-organization can be envisaged as an irreversible proces
leading to complex structures of the system through the cooperative action of subsysterasc8ncepts of
self-organization have emergedg.cybernetics, autopoiesis (Maturana & Varela 1980), molecular self-organization
(Eigen & Schuster 1979), and synergetics (Haken 1990). In most of these concepts, seltangasmviewed as a
cyclic, recursive process from an exo-perspective. For example an autopoietic ngdbfired as "a machine
organized as a network of processes of production of components that produces the componentdizehible re
network of processes that produced them" (Maturana & Varela 1980, p. 78). Cyclic selfaiigarm which
components produce identical or essentially similar components can in principle Isemegtédoy non-linear dynamical
systems. In contrast to this cyclic conceptionginal self-organization can be visualized by a spiral shifting away from
its original position in an adaptive evolutionary process. Original self-orgamzzdn be represented by the notion of
self-modifying component systems, in which the focus is on incessant (self-)mamific@omponent systems have the
following properties (Kampis 1992b):

« The set of the different types of the components of the system is open-ended.
e The system produces and destroys its own components during its typical activities.

Due to the production, destruction, afelnovainteraction of components, these systems constantly produce new
variables, leading to internal novelty. Sources of internal novelty may be the folloveinp{&1994):

Neglected or ‘frozen’ lower level variables
New interactions with the environment

New contexts
Change of material properties

¢

Swinging Swinging ,

Xi XZ Xn Xi X2 Xrl E X‘I. XZ xn Xn+1
C, encodings c,
>
time

Figure 4: Encoding of a dynamical system, taking the pendulum as an example. The set of variables (=
encoding) on the left side represents the swinging of the pendulum. However, this encodiaglis toot
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account for new variables of motion that keep coming up in the course of time (see thghtigifttee
figure). New variables thus invalidate old encodings and the system becomes unpec(iciited from
Kampis 1994).

Take a pendulum as an example (Fig. 4): It is encoded as a ‘typical’ pendulum swinging bacthagdtfin the
course of time new variables of motion keep coming up. Adepts of real-structure maidekhat such a model
"would be able to predict what would happen if the pendulum were stopped” (Bossel 1992). Thepiedinty
possible though, if the potentiality of a stoppage is incorporfwibri into the encoding,e. if it is accounted for in
the reading frame. However, systems pick up information on-line and there is an uniipjigdo$ things we do not
take into account in a given model (Kampis 1992a), so that it is impossible to map aévhatrploperties of the
components in advance. Newly produced variables are definabla pobteriori

The validity of the respective set determines the validity of the prediction of sgsteamior. The encoding of the
system in a determined frame of description as in the case of dynamical systeaisacaount for the complexity of
temporal production of variables (Kampis 1994), which successively invalidates thees@ind frame is crucial here:
While in the short run (as indicated by system times, see below) a given set maysystdintbehavior with a certain
degree of accuracy, in the long run self-modifying systems become unpredictablacdtiedeabstract system state is
outdated by the production of internal novelty. As component systems are self-refeaargigkrnal point of

reference is lost. The system becomes an endo-system to which an external observacbess. On large scales, the
exo-models thus break down.

The notion of time in self-organizing systems is fairly different from time in ehjce systems. External parameter time
is replaced by the concept of endo-time or system time. System time is linked to adeop&me a system takes

before reproducing (Kiimmerer 1996). Hierarchy theory assumes that natural systémsleacribed in the

framework of a nested, constitutive hierarchy (Ahl & Allen 1996, O’'Neilll 1986, Miiller 1992). The different levels

of organization correspond to different temporal scale levels and to differemhgisges. Accordingly, system times

vary from minutes/day®(g.chemical reactions in soil; molecular level) to months/yearsfopulation dynamics;
nutrient cycles) and decades/centur&g.ecosystems, landscapes, global system) (Ulrich 1993). Symmetry breaking
in self-organizing systems (Prigogiaeal. 1969) entails irreversibility and the notion of structurally determined systems
that depend upon their history.

The paradigm of self-modifying systems is non-classical, as these systems ar

* Non-determined: In open systems ‘properties’, ‘states’ and ‘objects’ are defraph posteriori.

* Non-local: Objects are context- and time-dependent, are globally dissolved and thasparslie(ioriand)
globally definable.

* Non-predictable: Internal novelty can not be handled externally, as the advent of newwaniadidates the
encoding.

Table 2 contrasts the two paradigms, the exo-physical, essentialist paradigra mgtion of reversibility and the
paradigm of self-organization, represented by the endo-physical concept of selfmgaglistems. Within the
essentialist paradigm, properties and states stand for the identity of the aydtean be defineal priori. Causality is
transparent, the ontologically conceived complexity of the system is invariable andtéme isysomputable as
properties, states and transition functions are well defined. In ecological mpdedingng notion of essentialism is
represented by the ‘base model’, which accounts for the complete input-output behaviot e€asyesiem and which
is valid for all frames (Zeigler 1976).

Table 2: The classical, reversible, essentialist paradigm of dynamical systesns ver
self-modification as a model of original self-organization (compiled frompi®994 and
Paslack 1991).

Essentialism Self-modification

(Reversibility) (Irreversibility)
Being-Becoming | Properties Relations

States Confluences (potentiality)
Objects Objects locally ana priori Objects globally and

definable posterioridefinable (Objects

context- and time dependent)

Causality Transparent Opaque

Strong Weak
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Linear Non-linear; circular

System Dynamical systems Growing systems
Analytically defined Reallistically defined
Given hierarchy Self-created hierarchy
Closed Open

Complexity Constant Variable

Environment Environment structures system Systems structure environment
External regulation Internal regulation
(external drivers)

Time Scalar, universal parameter time | System time (endo-time)
(exo-time)

Dynamics/ Reversible trajectories Irreversible Process

Development Continuity Bifurcation
Regularity Singularity

Computability Computable Non-computable

(Set not definable in advance)

Theoretical ecologists take different positions with regard to the base modeptomhile valid real-structure models
are supposed to be achievable in principle (Bossel 1992, Nielsen 1992) others doubt that suotatepresan be
achieved even for simple real ecosystems (Wissel 1989, pp. 1-7); Joergensen (1992) acismthveedgch a base
model can never be fulkinown because of the complexity of the system and the impossibilithyserveall states. In
this view, complexity is ontologically conceived and the impossibility of condensing thecessfean ecosystem into a
dynamical system is attributed to practical observational and computational (andhcipafriimitations.

In the paradigm of self-modification, ‘properties’ must be envisioned in a relati@ysds they depend on a changing
material context. The notion of a system state has to be abandoned, as states reahlés aaexpressions of the
properties of the system. The identity and the definition of the system’s componentsys @odtime-dependent and
"is only revealed at the end of a process, when all confluences and relations are already kewaspect" (Kampis
1994).

Modern natural science is based on an exo-physical conception, in which the matenabsyitestudy is regarded as
a sender and the observer as a receiver, collecting the signals emitted by th& loisjegb-physical concept collides
with the endo-physical notion of self-modifying systems, which pick up and create informatina ane for which
limited internal accessibility of information is an ontologically conceivedfagtampis 1994). In such systems,
definitions become temporally changeable due to self-modification; thus, theallassicept of computability where
everything has to be defined in advance ceases to work.

5. Dynamical systems as analytical tool for ‘noisy’ ecosystems?

Systems theory claims to be an interdisciplinary, universal theory, which allopsviteged access to complex
phenomena (Lilienfeld 1978). Dynamical systems as formal, paradigmatic reptieseat complex systems play an
outstanding role in a proclaimed ‘structural scientific revolution’ driven by theodésy of complexity’ (see.g.the
title of Hedrich 1994). In the empirical sciences, the theory of dynamical systenpoigant regarding both the
diffusion of complexity concepts and its application in natural system modeling. The ratitatheory describes the
possible behavior of natural systems, only if these systems are adequately reptBsepseems of partial differential
equations. Dynamical systems can only show the behavior prescribed by the mathematicalriieno other
behavior (Hedrich 1994, p. 30).

The theory of dynamical systems and its application in empirical sciences, likgyeaot the environmental sciences,
strives to fit the conception of modern natural science as laboratory science (Hoytiregee 1989). In the
laboratory, closed systems are constructed in which if-conditions or antecedqtpared to produce observable
effects or consequences. The corresponding notion of causality is interventionist {38 in that intervention in a
specific, controlled setting makes causal relationships appear. According®‘Verum facturiprinciple, truth and
understanding are attributed only to systems prepared or created by humans (Hosle 199ig Hallcking (1992),
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parts of our environment have to be remade laboriously into a ‘quasi-laboratory’ to reproduz®ifglpirenomena.
The dynamical systems approach makes use of process descriptions and of paraataisne@sinder laboratory
conditions, it aims at the exclusion of ‘noise’ and tries to achieve a high degree of.cldms, the theory of
dynamical systems attempts to work with the laboratory model and has indeed been apgiEfuiydo allopoietic,
technical systems.

Dynamical systems atbe paradigm in the environmental sciences, both as a conceptual background and as the formal
base of simulation modeling (Joergensen 1992, Richter 1994, Ratteted996) although the transferability of system
analysis and the paradigm of dynamical systems to ecosystems has been questioneal @irgadgrtwo decades ago
(Miller 1979). For the following reasons, we consider the dynamical system paradigquiatadier the representation

of ecosystems.

Dynamical systems omit the openness constitutive of ecosystems. Closed dynateioal Bys counter to the
heterogeneity of ecosystems and to the practical and theoretical limitatfpyseion the observation of ecosystems.
We agree with the work of Oreskesal. (1994) who show that ecosystem openness and the formal closeness of
dynamical systems collide in three respects: First, dynamical systeme riequir parameters that are incompletely
known .g.the distributed parameters). Secondly, they are based on continuum theory that ensailsiafersnation
on structure and processes on finer scales (Oreskes, in prgssiie Darcian velocity used for the differential
equations is different from the actual velocity at the pore scale. Continuum is a hyabitietlization, disregarding
the discreteness of ecological entities (Breckling 1992). Thirdly, Oreske$1994) show that they recur to additional
inferences and assumptiorsd.kinetic effects are usually neglected), making use of auxiliary hypotheses until the
dynamical system and the corresponding simulation model fit the data. Severalstystéimes may produce the same
results;i.e. model results are underdetermined by the data.

A dynamical system is an abstraction in which the system is separated fromritsmevit or background. The
background is regarded as noise that is eliminated in the abstraction step as efgfimezll inputs (the input vector)
reach the system. Thus, the system and its input and output vector become a conceptually telosethsysotion of
noise is based on a noise/non-noise difference in conjunction with the system/environmeatatifintroduced by
information theory and system analysis. Yet in ecology, there are no grounds on which noisebdlkad system
(abstraction from the background) could be distinguished. Ecosystems and order in esasgstactually be the
result of ‘noise’ — thus, "noise is music to the ecologist” (Valsangiacomo 1998, p. 270). in agsigsis what started
out as arecological systerhecomes a mesystenosing its ecological trait: For ecological issues are issues in which
an system-environmemrbntextis structured due to the development of selective behavior of the system towards its
environment. The ecological view of a system-environnsentextimplies unity (of the system-environment
difference) despite difference (of system and environment) or even unity due to déférahmann 1990, pp. 21f.).

The differences introduced to abstract a certain system from its context peeweifiaation and unity of context and
environment. For example, reintegration of the population-community difference by the gtootiss difference is
impossible. Correspondingly, ecosystem theory has not come up with a single examplessffsbieonstruction or
prediction of both aspects of a given system (Lange 1998).

In dynamical systems,faxed number of variables are contained. However, the assumption of a fixed number of
degrees of freedom collides with the constant come and go of organisms and the memeatoin and extinction in
ecosystems along time, resulting in the production of internal novelty, the change of stystgure, and the creation
and extinction of new variables. In our view, ecosystems have to be regarded as selfighodifiponent systems, for
which thea priori definition of variables is impossible. Internal novelty and constant drift of ecosyatehikeir
components is not ‘noise’, but it is essential for the structural coupling of an open sy&teenvironment (Maturana
& Varela 1987) and for the structuring of the system-environment context, both in the past aagréhe&Separation of
system and context can at best give a static, momentary view of a frozen sysenDgte@mical system modeling of
future states assumes that the abstract state and the external pam@etecdunt for a determinate temporal
transition. However, self-modifying systems do not transit from one state witlmitezdrproperties to another
determinate state, but are in an incessant process of original self-oiganimavhich relations are continually
established and lost and states are superseded by confluences. No dynamical systesnmgiorthis internal
novelty and the peculiar system times of system components. For short time frame&alysystem descriptions may
retain validity. In the long run, however, the dynamical system as a reading frame becodated (Kampis 1994).

The notion of reversibility underlying the dynamical system paradigm implies that angmiontime is equal and that
past states can be computed from present states. The history of the system is suppasedainde in the system
structure and specific parameters. Such systems are trivial machine® thyaithetically determined, analytically
determinable, predictable, and independent of histerythere is an operator relating input to output (Foerster 1998).
However, the failure of simulation models is attributed precisely to the ignoratize loistorical character of systems
and of system memory (Lange 1998). It has been hypothesized that sequences in complexhsysteonstsvial
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long-range correlations, entailing a considerable memory effect (Elelaigl995, pp. 48-50). ‘Historicity’ denotes
the dependence of the present ‘state’ of a system upon its history. The notion of histamegpands to the notion of
non-trivial machines, in which the historical record of operations influences preseati@pe Non-trivial machines
are unpredictable and in most cases not analytically determinable (Foerster 19@®)ofthat, self-modifying
systems are not even synthetically determined. Temporal dynamics of self-modi§tgrmsare characterized by
symmetry breaking, irreversibility, non-linearity, bifurcations, and evolution. Frieendiscovery of) complexity a path
is leading to history (Longo 1994).

5.1 Validation, validity and future scenarios

The conventional notion of validation distinguishes between ‘operational validation’ andptoslogalidity’ (Rykiel
1996). According to that view, conceptual validity tests the internal logic of a model arititisagbout the predictive
capacities of the model. Operational validation pretends to be an "objective test onlhiw medel outputs fit the
data" (Joergensen 1991, pp. 68f.). Operational validation thus does not imply that the intetoaé siftice model
corresponds to actual processes, but would be the demonstration that a model possisfae®aysainge of
accuracy consistent with the intended application of the model.

However, the conventional notion fails for practical and principal reasons. Genecelptext standards for testing and
validating ecosystem models are nonexistent. In contrast, current practiceitetized by vague, subjective claims
that model predictions show ‘acceptable’ agreement with data (Kiretiar1996). Validation procedures commonly
consist in comparing modeled and measured data or the outputs of different models foetbet sdimput data.
Biogeochemical models for agroecosystems have been validated this way, showiherablesteviation when
different model outputs are compared to each other and to measureel.glata {Viligen 1991, de Willigen &

Neetson 1985, Diekkriiger 1992). Aside from these practical limitations, there arbundaemental shortcomings of
the validation procedures in the earth sciences that are discussed by RastetleTli&d8&sal impossibility of the
verification and validation of (closed) models of (open) natural systems has been det@dstrOreskest al

(1994).

Measured data used for model calibration and validation do not cover the range of potentiahsarfdiystem and
external variables, particularly as data usually belong to short-term datac=isliAgly, model validity is restricted to
the range of conditions represented by the respective data set. When this rangesisdsutgapredictive capacity of
the model is in doubt and can only be confirragabsteriorj i.e. there is no prediction.

The calibration step, in which models with a large number of non-identifiable paraifweterparameterization) are
fitted to measured data, assures that models can be adapted to a given datgsetiveresthe internal structure of
the model. Not only are models underdetermined by data (Oresked4994), they can even become immune to data
(Hauhset al. 1996): eventual lack of predictive power is attributed to the ‘intrinsic complexity’ cfystem under
study, leading at best to a readjustment of the medgl{y the re-calibration of parameters or the addition of further
processes). The role of simulation models as predictive tools in the environmemteésa@nd as instruments of
decision support has been harshly criticized for the lack of validity and validation. Ma¢19%88) speaks of the
construction of massive imaginary future scenarios to provide predictions that cannofidx lwe checking against
objective facts. To him models are speculation without empirical check. Funtowi&aaetz (1992) criticize the
absence of effective tests for demonstrating what sort of correspondence, if @nig bietween models and reality. To
them models are devoid of certainty, quality, and reality and are to be regarded asadeostphenomenon. In the
absence of testing, models may take on an aura of reality in the minds as#rs{Philip 1991) — a particular
precarious point if models are employed as risk assessment tools.

5.2 Arole for dynamical simulation models in the environmentasciences?

We claim that mechanistic simulation models of ecosystems are not suitaedittive purposes, as they are not able
to produce non-trivial predictions of future outcomes (Haihal 1996). While the mathematical behavior of the
formal dynamical system is computable, the ‘behavior’ of the natural system is ntihgddga sets or empirically
recognized patterns in natural systems may be reproduced by models, but this is not predieiwadNtability

partly owes to the self-modifying character of ecosystems that cannot be regmdseany dynamical system. To
embrace the complexity of natural systems (Kay & Schneider 1995) means to abandon the atetabipty.

The implications for ecological risk assessment are profound. Unpredictabilityuchlrgystems notwithstanding, there

are still calls to improve the predictability of biogeochemical system behavaraof a strategy to reduce global
risks, e.g.to decrease the risk of nitrate leaching to the groundwater (WBGU 1999, p. 323). Nes®rthele is
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growing awareness that true predictability cannot be achieved. For example, RigBtrstates that, after repeated
application, a faster decomposition of a newly produced pesticide may be explained by tie agafiiion of the
microorganisms, but it can not be predicted. The intrinsic unpredictability of ecosysiggests following the
precautionary principle in risk assessment (Westra 1997), instead of succumbing:tsifsteen engineering fallacy.

However, if dynamical simulation models are not suited for predictive purposes, whatlefiéo them in the
environmental sciences?

We agree with Nancy Cartwright’s statement that models are "a workiohfieind that "some properties ascribed to
objects in the model will be genuine properties of the object modeled, but others willdhe preperties of
convenience" (Cartwright 1983, p. 153). In terms of general modeling theory, the model odrsists of attributes
representing a part of the original and a set of abundant attributes without correspondeinitrites of the original
(Stachowiak 1983, p. 119).

Despite not being a ‘real thing, "a model may resonate with nature" (OresiE4994) and thus has heuristic value,
particular to guide further study. Corresponding to the heuristic function, Joergensen [di#@5)hat models can be
employed to reveal ecosystem properties and to examine different ecologicaktidodels can be asked scientific
guestions about properties. According to Joergensen (1994), examples for ecosystemsfimyedtley the use of

models as synthesizing tools are the significance of indirect effects, ttenegi®f a hierarchy, and the ‘soft’ character
of ecosystems. However, we agree with Oreskted (1994) who regard models as "most useful when they are used to
challenge existing formulations rather than to validate or verify them". Modeketawf hypotheses’, may reveal
deficiencies in hypotheses and the way biogeochemical systems are observed. Moelgfreguently identify
lacunae in observations and places where data are missing (Yaalon 1994).

As an instrument of synthesis (Rastetter 1996), models are invaluable. They are a gapsunayarize an individual
research project (Yaalon 1994) and they are capable of holding together multidisclplioatedge and perspectives
on complex systems (Patten 1994).

While models as a product may have heuristic value, we would like to emphasize also ¢héhelaodeling process:
"[...] one of the most valuable benefits of modeling is the process itself. These $anefite only to participants and
seem unrelated to the character of the model produced" (Patten 1994). Model buildinggstaveyispcedure, in
which every step requires judgment and decisions, making model development ‘half sci¢ace ahd a matter of
experience (Hoffmann 1997, Hornung 1996). Thus modeling is a learning process in which modfdecedte make
explicit their notions about the modeled system and in which they learn how the analytétidisomponents of a
system can be ‘glued’ (Paton 1997). As modeling mostly takes place in groups, modeling gnthdsssof
knowledge has to be envisaged as a dynamic communication process, in which criterisanteg the meaning of
terms, the underlying concepts and theories, and so forth are negotiated. Model making maythestmtalyst of
interdisciplinary communication.

In the assessment of environmental risks, however, an exclusively scientific mpdediags is not sufficient, as
technical-scientific approaches to ‘post-normal’ risks are unsatisfadtosa(1998) and as the predictive capacity and
operational validity of model®(g.for scenario computation) is in doubt. The post-normal science approach (Funtowicz
& Ravetz 1991, 1992, 1993) takes account of the stakes and values involved in environmental decision making.
Following a ‘post-normal’ agenda, model development and model validation for risk aeseskould become a trans-
scientific (communication) task, in which "extended peer communities" parécpet in which non-equivalent
descriptions of complex systems are made explicit, negotiated, and synthesized nimoodiging practice, however,
models are highly opaque and can rarely be penetrated even by other scientists (Oreskascpermunication). As
objects of communication, models still are closed systems and black boxes.

6. Conclusion

The dynamical system paradigm remains within the limits of an exo-physically eedsyistems theory which is based
on conceptually closed systems and which claims that essential, systemic epsdiérom the particular
configuration of system components. To achieve closure of dynamical systems, theesandtprocesses of
biogeochemical systems are idealized or simplified, disregarding spatitdrmporal variability. Criteria for the
identification of essential components, processes, and parameters and for theiteadeebination in dynamical
systems are lacking. Thus, the choice of ‘relevant’ processes and parametersaindctiteon of system structure are
highly subjective. Owing to the impossibility of model validation, models run the risk of losittgct to the empirical
‘reality’ they refer to.
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In biogeochemical systems, the interplay of biological components with their geoahemiironment play a crucial
role in the processing of chemical substances. As to this interaction, the paradigrarical systems represents only
a halfway discovery of complexity. In our view, the closed encoding of ecosystems as dysgstérat runs counter
to the self-modifying character of ecosystems as a result of their singtday Imisa singular context. As nonstationary
systems (self-modification) in a nonstationary context (history), ‘complex naystehss’ are unpredictable.

While in the environmental sciences a representationalistic notion of dynamteah syedels as the product of
scientific endeavor prevails, we emphasize the importance of the modeling procésknd/can be a way of coping
with different types of complexity: the complexity of integrating and synthesizidg¢tienist) statements and of
gluing analytically isolated components; the descriptive complexity that allowsifioerous, non-equivalent system
descriptions, depending upon standpoint; the communicative complexity, both inter- andiénatifizsarising from
nonequivalent descriptions of complex systems. Modeling can be a means of reduction of goawpieis realizing
onearrangement (or agreement) amongst innumerous contingent arrangements.
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